Wednesday, 21 March 2018

Energy transitions and geoscience...by Prof Mike Stephenson

Radcliffe, Nottinghamshire, at the height of the Industrial Revolution
At a recent conference at Chatham House I was reminded how important geoscience is to energy transitions. The Energy Transitions 2018 conference looked at some of the technologies and geopolitics that underlie the present movement towards renewables and away from fossil fuels.
 

Geology at the centre of energy transitions

But of course geology has always been at the centre of energy transitions. The industrial revolution had at its heart a transition from energy from wood and falling water to coal (the start of the fossil economy), in the process allowing greater energy on tap and also greater flexibility to operate (assuming you could get coal to your factory). The fossil economy also meant a long-term buy-in to coal and then to petroleum leading to increased CO2 emissions amongst other more beneficial aspects related to greater availability of energy including increased wealth and living standards. The start of the industrial revolution produced an ‘inflection point’ on the CO2 curve indicating an important point in human history when the focus of energy resource provision switched from the surface of the Earth to the subsurface. The transition from coal to oil generated atmospheric change too. Changes in the 1950s in the rate of human consumption and manufacturing have generated an inflection point known as the ‘Great Acceleration’.


Resource distribution, extent and accessibility

So the most obvious relationship between geoscience and energy transitions is the distribution of resources, their extent, distribution and accessibility. In the case of coal, its distribution has governed past industrialisation, and to some extent the accumulation of human wealth and power. The nations of the industrial revolution are still amongst the most powerful in the world.


The next transition to renewables

But moving into the next transition to renewables, geoscience and geological surveys will have just as important a role. Decarbonisation will involve geoscience at every level, from straightforward low carbon generation (e.g. geothermal), to energy storage to counteract renewables intermittency (e.g. compressed air energy storage, heat storage), to emissions abatement of fossil fuel generation and industry (e.g. carbon capture and storage). Geological studies that support these technologies will therefore be vital to the effort to go through the next transition.


Slow transition to renewables

Coal mine in Dhanbad, India
(Source: https://www.flickr.com/photos/94088966@N00/182619562/sizes/l/)
Studies show that transitions can be slow because of the in-built inertia of the incumbent technology. This may be visible in the developing world which is poised to industrialise and to experience changes in living standards, wealth and energy usage. Most forecasts suggest that energy demand will increase in the developing world, but the extent to which this demand will be satisfied by fossil fuels is not known, but could be considerable. India is a case in point. The forecasts of the IEA, EIA and BP suggest that much of India’s energy in future will come from coal. At present coal provides about 70% of India's electricity but about 243 GW of coal-fired power is planned in India, with 65 GW actually being constructed and an extra 178 GW proposed. Work by lead by Christine Shearer of the charity CoalSwarm has surveyed this proposed ‘fleet’ of Indian coal power stations. Their survey shows that coal plants under development could be producing 435 GW of coal power by 2025, and, assuming an average lifetime of 40 years, the coal plants could be operating as far ahead as 2065. Such a commitment to coal would guarantee high Indian greenhouse gas emissions for many years to come and prolong the dominance of fossil fuels, freezing out renewables. If the developing world takes up fossil fuels what hope do we have to keep within the 2 degree limit?


Understanding energy transitions properly

Human energy systems - the economies that are built around coal, oil and gas – contain inertia that slows down change.  They also operate in similar ways to the physical science feedbacks and tipping points of the natural climate system, and many other natural systems and cycles. There are serendipitous events that lead to the increased use of fossil fuels, and positive feedbacks that allow fuels to rapidly grow. The industrial revolution has many examples – like the introduction of coal/steam powered pumps that allowed coal mining to go deeper below the water table, so that more coal could be mined. Regulation and policy matter too – and politics. So to be able to understand energy transitions properly, it’s not just technology that matters – so does an understanding of human systems.

What role do geologists play?

Wind turbines at Holderness
But how can geologists and geological surveys be part of the transition? We should be thinking about geological studies that support such diverse aspects as pumped hydro storage, low enthalpy geothermal, compressed air energy storage, hydrogen storage, CCS, and biofuels and CCS (BECCS). We should be thinking about geological studies to support infrastructure (the pipelines for example) and where they might go. This will mean linking in with the Government’s Industrial Strategy and place agenda. Natural gas may also have a place in this work since it is (at the moment) the de facto way that the energy systems of the UK and elsewhere are adapting to the intermittency produced by increasing renewables. We may even have to start thing harder about batteries and the where the metals that make them might come from in the future!

If you are interested in the wider geology – energy – climate nexus read my new book:  https://www.elsevier.com/books/energy-and-climate-change/stephenson/978-0-12-812021-7

Prof Mike Stephenson is the Director of Science and Technology at the BGS.

No comments: